KS8066 Spinel Molecular Model
Couldn't load pickup availability
Use this text to encourage communication or promote sharing on social networks.
Spinel Molecular Model
Crystal structure of spinel. Normal spinel structures are usually cubic close-packed oxides with two tetrahedral and one octahedral sites per formula unit. The tetrahedral spaces are smaller than the octahedral spaces. B3+ ions occupy half the octahedral holes, while A2+ ions occupy one-eighth of the tetrahedral holes.
Normal spinel structures are usually cubic close-packed oxides with two tetrahedral and one octahedral sites per formula unit. The tetrahedral spaces are smaller than the octahedral spaces. B3+ ions occupy half the octahedral holes, while A2+ ions occupy one-eighth of the tetrahedral holes. Mineral spinel MgAl2O4 has a normal spinel structure.
Inverse spinel structures have a different cation distribution in that all of the A cations and half of the B cations occupy octahedral sites, while the other half of the B cations occupy tetrahedral sites. An example of an inverse spinel is Fe3O4, if the Fe2+ (A2+) ions are d6 high-spin and the Fe3+ (B3+) ions are d5 high-spin.
In addition, there are intermediate cases where the cation distribution can be described as (A1−xBx)[Ax⁄2B1−x⁄2]2O4, where parentheses () and brackets [] are used to denote tetrahedral and octahedral sites, respectively. The so-called inversion degree, x, adopts values between 0 (normal) and 1 (inverse), and is equal to 2⁄3 for a completely random cation distribution.
In order to explain the adoption of a particular cation distribution in a spinel structure, one must take into account the crystal field stabilization energies (CFSE) of the transition metals present. Some ions may have a distinct preference for the octahedral site depending on the d-electron count. If the A2+ ions have a strong preference for the octahedral site, they will displace half of the B3+ ions from the octahedral sites to tetrahedral sites. Similarly, if the B3+ ions have a low or zero octahedral site stabilization energy (OSSE), then they will occupy tetrahedral sites, leaving octahedral sites for the A2+ ions.
Burdett and co-workers proposed an alternative treatment of the problem of spinel inversion, using the relative sizes of the s and p atomic orbitals of the two types of atom to determine their site preferences. This is because the dominant stabilizing interaction in the solids is not the crystal field stabilization energy generated by the interaction of the ligands with the d electrons, but the σ-type interactions between the metal cations and the oxide anions. This rationale can explain anomalies in the spinel structures that crystal-field theory cannot, such as the marked preference of Al3+ cations for octahedral sites or of Zn2+ for tetrahedral sites, which crystal field theory would predict neither has a site preference. Only in cases where this size-based approach indicates no preference for one structure over another do crystal field effects make any difference; in effect they are just a small perturbation that can sometimes affect the relative preferences, but which often do not.
This model is hand made in the USA by Klinger Educational Products. This is a permanent structure. We only use grade A materials. The 1 inch balls are made of hard Maplewood that includes an enameled painted finish. Polished steel rods are used to connect the wooden balls together.
Spinel contains 114 - 1 inch balls.