KC7031 Coesite Molecular Model
Regular price
$795.00
Couldn't load pickup availability
Use this text to encourage communication or promote sharing on social networks.
Coesite Molecular Model
Coesite is a form (polymorph) of silicon dioxide SiO2 that is formed when very high pressure (2–3 gigapascals), and moderately high temperature (700 °C or 1,300 °F), are applied to quartz. Coesite was first synthesized by Loring Coes, Jr., a chemist at the Norton Company, in 1953.Coesite is a tectosilicate with each silicon atom surrounded by four oxygen atoms in a tetrahedron. Each oxygen atom is then bonded to two Si atoms to form a framework. There are two crystallographically distinct Si atoms and five different oxygen positions in the unit cell. Although the unit cell is close to being hexagonal in shape ("a" and "c" are nearly equal and β nearly 120°), it is inherently monoclinic and cannot be hexagonal. The crystal structure of coesite is similar to that of feldspar and consists of four silicon dioxide tetrahedra arranged in Si4O8 and Si8O16 rings. The rings are further arranged into chains. This structure is metastable within the stability field of quartz: coesite will eventually decay back into quartz with a consequent volume increase, although the metamorphic reaction is very slow at the low temperatures of the Earth's surface. The crystal symmetry is monoclinic C2/c, No.15, Pearson symbol mS48
This model is hand made in the USA by Klinger Educational Products. This is a permanent structure. We only use grade A materials. The 1 inch balls are made of hard Maplewood that includes an enameled painted finish. Polished steel rods are used to connect the wooden balls together.
Coesite contains 182 - 1 inch balls
.